
Introduction to Graph Neural Networks

Giannis Nikolentzos

University of Peloponnese, Greece

HIAS Summer School in AI
July 1, 2024

1 / 37

What is a Graph?

A graph is a mathematical structure used to represent a set of objects and their
relationships.

1
2

3
4

5

Graph G = (V,E)

V = {1, 2, 3, 4, 5}
E = {(1, 2), (1, 3), (2, 4), (3, 4), (2, 5), (4, 5)}

2 / 37

How do we Represent Graphs on a Computer?

Adjacency matrix A:

an n× n matrix where n is the number of nodes of the graph

if the i-th and j-th node of the graph are connected by an edge, then
Ai,j = 1, otherwise Ai,j = 0

1
2

3
4

5

A =

0 1 1 0 0
1 0 0 1 1
1 0 0 1 0
0 1 1 0 1
0 1 0 1 0

3 / 37

Machine Learning on Graphs

Graphs are everywhere!!

Molecule Brain network Social network

Many problems cannot be solved by conventional techniques
Need for machine learning algorithms

Common learning tasks:
Node-level tasks:

node classification
node regression

Graph-level tasks:
graph classification
graph regression

Other tasks:
link prediction
community detection

4 / 37

Motivation - Fraud Detection in Social Networks

Perform node classification to predict whether a user is fraudster or not [Dou et al.,

CIKM’20]

5 / 37

Motivation - Molecular Property Prediction

12 targets corresponding to molecular properties: [’mu’, ’alpha’, ’HOMO’,
’LUMO’, ’gap’, ’R2’, ’ZPVE’, ’U0’, ’U’, ’H’, ’G’, ’Cv’]

SMILES: NC1=NCCC(=O)N1

Targets: [2.54 64.1 -0.236 -2.79e-03
2.34e-01 900.7 0.12 -396.0 -396.0
-396.0 -396.0 26.9]

SMILES: CN1CCC(=O)C1=N

Targets: [4.218 68.69 -0.224 -0.056
0.168 914.65 0.131 -379.959 -379.951
-379.95 -379.992 27.934]

SMILES: N=C1OC2CC1C(=O)O2

Targets: [4.274 61.94 -0.282 -0.026
0.256 887.402 0.104 -473.876 -473.87
-473.869 -473.907 24.823]

SMILES: C1N2C3C4C5OC13C2C5

Targets: [? ? ? ? ? ? ? ?
? ? ? ?]

Perform graph regression to predict the
values of the properties [Gilmer et al.,

ICML’17]

6 / 37

Can we Solve Node-Level Tasks with Standard Architectures?

Represent each node by the corresponding row of the adjacency matrix

Feed the vectors to an MLP

1
2

3
4

A =

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

These vectors explicitly capture only first-order proximity!

7 / 37

Can we Solve Graph-Level Tasks with Standard Architectures?

We can transform the adjacency matrix into a vector (by concatenating its
rows) and feed the vectors to an MLP

Or treat the adjacency matrix as an image and feed it to a CNN

Or represent the graph as a sequence of nodes and feed the rows of the
adacency matrix to an RNN

But...

Permutations of the adjacency matrix (i.e., reorderings of the nodes)
represent the same graph

Thus, model output needs to be the same for all permutations of the
adjacency matrix

8 / 37

Can we Solve Graph-Level Tasks with Standard Architectures?

We can transform the adjacency matrix into a vector (by concatenating its
rows) and feed the vectors to an MLP

Or treat the adjacency matrix as an image and feed it to a CNN

Or represent the graph as a sequence of nodes and feed the rows of the
adacency matrix to an RNN

But...

Permutations of the adjacency matrix (i.e., reorderings of the nodes)
represent the same graph

Thus, model output needs to be the same for all permutations of the
adjacency matrix

8 / 37

Can we Solve Graph-Level Tasks with Standard Architectures?

For example, the next two adjacency matrices represent the same graph

A =

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

 A′ =

0 1 1 1
1 0 0 1
1 0 0 0
1 1 0 0

1

2

3
4

2
4

1
3

Two graphs G1 and G2 are isomorphic if there exists a bijection f between their
nodes such that there is an edge between nodes v and u in G1 if and only if there
is an edge between nodes f(v) and f(u) in G2

9 / 37

Message Passing Neural Networks

Consist of a series of message passing layers

Within each layer, the representation of each node h
(t)
v is updated based on

its previous representation and the representations of its neighbors:

m(t+1)
v = AGGREGATE

({{
h(t)
u

∣∣u ∈ N (v)
}})

h(t+1)
v = COMBINE

(
h(t)
v ,m(t+1)

v

)
where N (v) is the set of neighbors of v, and AGGREGATE and
COMBINE are message functions and node update functions respectively

* a node’s neighbors have no natural ordering

the AGGREGATE function operates over an unordered multiset of vectors
→ must be invariant to permutations of the neighbors

Representations of last layer h
(T)
v typically followed by one or more

fully-connected layers

10 / 37

Example of Message Passing

h
(t)
1

h
(t)
2

h
(t)
3

h
(t+1)
4

h
(t)
5

h
(t)
6

h
(t)
7

m
(t+1)
4 = AGGREGATE

({{
h
(t)
2 ,h

(t)
3 ,h

(t)
5 ,h

(t)
6

}})
h
(t+1)
4 = COMBINE

(
h
(t)
4 ,m

(t+1)
4

)
11 / 37

Graph Convolutional Network (GCN)

Each message passing layer of the GCN model [Kipf and Welling, ICLR’17] is defined as
follows:

h(t+1)
v = ReLU

(
W(t) 1

1 + d(v)
h(t)
v +

∑
u∈N (v)

W(t) 1√
(1 + d(v))(1 + d(u))

h(t)
u

)

where d(v) is the degree of node v

In matrix form, the above is equivalent to:

H(t+1) = ReLU
(
ÂH(t) W(t)

)
where Â = D̃− 1

2 Ã D̃− 1
2 , Ã = A+ I and D̃ is a diagonal matrix such that

D̃ii =
∑n

j=1 Ãij

12 / 37

Example of Message Passing Layer of GCN (1/2)

1

2

3

4

[2.1, 12.0]

[1.2, 9.7]

[-0.5, 5.8]

[3.4, 15.9]

A =

0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

X =

2.1 12.0
1.2 9.7
−0.5 5.8
3.4 15.9

We compute matrices Ã and D̃:

Ã = A+ I =

1 1 1 0
1 1 1 1
1 1 1 0
0 1 0 1

 D̃ =

3 0 0 0
0 4 0 0
0 0 3 0
0 0 0 2

13 / 37

Example of Message Passing Layer of GCN (2/2)

And then matrix Â:

Â = D̃− 1
2 ÃD̃− 1

2 =

0.333 0.288 0.333 0
0.288 0.25 0.288 0.353
0.333 0.288 0.333 0
0 0.353 0 0.5

The parameters of the message passing layer are as follows:

W =

[
1.064 0.211 −0.557
−1.282 0.614 0.996

]
b =

[
−1.177 −0.540 1.331

]
The representations of the first message passing layer are computed as follows:

H = ReLU
(
Â
(
XW + b

))
=

0 5.024 9.466
0 7.859 13.588
0 5.024 9.466
0 6.971 11.281

14 / 37

Graph Attention Network (GAT)

Messages from some neighbors may be more important than messages from
others!!

GAT applies self-attention on the nodes [Veličković et al., ICLR’18]

For nodes vj ∈ N (vi), computes attention coefficients that indicate the
importance of node vj ’s features to node vi:

α
(t)
ij =

exp
(
LeakyReLU

(
a⊤[W(t)h

(t)
i ||W(t)h

(t)
j]

))
∑

k∈Ni
exp

(
LeakyReLU

(
a⊤[W(t)h

(t)
i ||W(t)h

(t)
k]

))
where [·||·] denotes concatenation of two vectors and a is a trainable vector

15 / 37

Graph Attention Network (GAT)

Then the representations of the nodes are updated as follows:

h
(t+1)
i = σ

(∑
j∈Ni

α
(t)
ij W

(t)h
(t)
j

)

In matrix form, the above is equivalent to:

H(t+1) = σ
((

A⊙T(t)
)
H(t)W(t)

)
where ⊙ denotes elementwise product and is matrix such that T

(t)
ij = α

(t)
ij

More than one attention mechanisms can be employed by
concatenating/averaging their respective node representations:

h
(t+1)
i = σ

(1

K

K∑
k=1

∑
j∈Ni

[α
(t)
k]ijW

(t)
k h

(t)
j

)
where [α

(t)
k]ij are the attention coefficients computed by the kth attention

mechanism, and W
(t)
k is the corresponding weight matrix

16 / 37

Can we use Message Passing Neural Networks to Compute Graph
Representations?

We can utilize a readout function!

Step 1: Within each message passing layer, the representation of each node h
(t)
v

is updated based on its previous representation and the representations of its
neighbors:

m(t+1)
v = AGGREGATE

({{
h(t)
u

∣∣u ∈ N (v)
}})

h(t+1)
v = COMBINE

(
h(t)
v ,m(t+1)

v

)
where N (v) is the set of neighbors of v, and AGGREGATE and COMBINE
are message functions and node update functions respectively

Step 2: The readout step computes a feature vector for the entire graph using
some permutation invariant readout function READOUT:

hG = READOUT

({{
h(T)
v

∣∣v ∈ V
}})

17 / 37

How Can we Build Message Passing Neural Networks for Learning
Graph Representations?

1 Take a message passing neural network that can produce node
representations

2 Add a readout function to the model. Examples of functions:

sum aggerator: computes the sum of the representations of the nodes of the
graph

hG =
∑
v∈V

h(T)
v

mean aggerator: computes the sum of the representations of the nodes of the
graph

hG =
1

n

∑
v∈V

h(T)
v

max aggerator: an elementwise max-pooling operation is applied to the
representations of the nodes of the graph

hG = max
({{

h(T)
v

)∣∣v ∈ V
}})

where max denotes the elementwise max operator

18 / 37

Differentiable Graph Pooling

The DiffPool model [Ying et al, NIPS’18]:

learns hierarchical pooling analogous to CNNs

sets of nodes are pooled hierarchically

soft assignment of nodes to next-level nodes

A different GNN is learned at every level of abstraction

19 / 37

Differentiable Graph Pooling

Each DiffPool layer coarsens the input graph:

X(t+1) = S(t)⊤Z(t)

A(t+1) = S(t)⊤A(t)S(t)

where A(t+1) is the coarsened adjacency matrix, and X(t+1) is a matrix of
embeddings for each node/cluster

Matrix S(t) ∈ Rnt×nt+1 provides a soft assignment of each node at layer t to
a cluster in the next coarsened layer t+ 1

The assignment and embedding matrices are generated by two separate
message passing neural networks:

Z(t) = GNN
(t)
embed(A

(t),X(t))

S(t) = softmax
(
GNN

(t)
pool(A

(t),X(t))
)

where the softmax function is applied in a row-wise fashion

20 / 37

Example of Coarsening Procedure of DiffPool

A(1) =

0 1 0 0 0
1 0 1 0 0
0 1 0 1 1
0 0 1 0 1
0 0 1 1 0

 Z(1) =

0.5 −1.2
0.3 −1.4
−0.5 0.8
−0.1 1.2
−0.8 0.6

 S(1) =

0.9 0.1
0.8 0.2
0.2 0.8
0.1 0.9
0.1 0.9

X(2) = S(1)⊤Z(1) =

[
0.5 −1.86
−1.1 1.86

]
A(2) = S(1)⊤A(1)S(1) =

[
1.86 1.64
1.64 4.86

]

2

1

3

4

[0.3, -1.4]

[0.5, -1.2]

[-0.5, 0.8]

[-0.1, 1.2]
5

[-0.8, 0.6]
1

[0.5, -1.86]

2

[-1.1, 1.86]
1.64

1.86 4.86

21 / 37

How Powerful are Message Passing Neural Networks?

Can message passing models map all non-isomorphic graphs to different
representations?

Consider the following two graphs:

1

[1.2, 0.5]

2

[1.2, 0.5]

3

[1.2, 0.5]

4

[1.2, 0.5]

5

[1.2, 0.5]

6

[1.2, 0.5]

G1

1

[1.2, 0.5]

2

[1.2, 0.5]

3

[1.2, 0.5]

4

[1.2, 0.5]

5

[1.2, 0.5]

6

[1.2, 0.5]

G2

All standard message passing models will map G1 and G2 to the same
vector!!

Those models are at most as powerful as the Weisfeiler-Leman (WL) test of
isomorphism [Morris et al., AAAI’19; Xu et al., ICLR’19; Nikolentzos et al., Neural Networks

130]

22 / 37

How Powerful are Message Passing Neural Networks?

Can message passing models map all non-isomorphic graphs to different
representations?

Consider the following two graphs:

1

[1.2, 0.5]

2

[1.2, 0.5]

3

[1.2, 0.5]

4

[1.2, 0.5]

5

[1.2, 0.5]

6

[1.2, 0.5]

G1

1

[1.2, 0.5]

2

[1.2, 0.5]

3

[1.2, 0.5]

4

[1.2, 0.5]

5

[1.2, 0.5]

6

[1.2, 0.5]

G2

All standard message passing models will map G1 and G2 to the same
vector!!

Those models are at most as powerful as the Weisfeiler-Leman (WL) test of
isomorphism [Morris et al., AAAI’19; Xu et al., ICLR’19; Nikolentzos et al., Neural Networks

130]

22 / 37

Which Model is Equally Powerful to the WL Test?

The AGGREGATE, COMBINE and READOUT functions of a message
passing model are injective ⇒ The model is as powerful as the WL test

The AGGREGATE and READOUT functions operate on multisets of node
representations

Question: Are commonly-employed AGGREGATE and READOUT functions
injective or not?

Turns out that mean and max functions are not injective!

On the other hand, sum aggregators can represent injective, in fact, universal
functions over multisets

23 / 37

Which Model is Equally Powerful to the WL Test?

The AGGREGATE, COMBINE and READOUT functions of a message
passing model are injective ⇒ The model is as powerful as the WL test

The AGGREGATE and READOUT functions operate on multisets of node
representations

Question: Are commonly-employed AGGREGATE and READOUT functions
injective or not?

Turns out that mean and max functions are not injective!

On the other hand, sum aggregators can represent injective, in fact, universal
functions over multisets

23 / 37

Graph Isomorphism Network (GIN)

GIN is a message passing neural network that [Xu et al., ICLR’19]:

models injective multiset functions for the neighborhood and node
aggregation

has the same power as the Weisfeiler-Lehman test

Step 1: GIN updates node representations as follows:

h(t+1)
v = MLP(t)

((
1 + ϵ(t)

)
h(t)
v +

∑
u∈N (v)

h(t)
u

)
where ϵ(t) is a learnable scalar

Step 2: Utilizes the following graph-level readout function which uses information
from all iterations of the model:

hG =
∑
v∈G

h(T)
v

24 / 37

Why Do We Care About the Expressive Power?

Non-isomorphic graphs that are not distinguished by a model are mapped to
the same feature vector!!

Therefore, there are cases where the model cannot assign different labels
to different graphs

Consider, for example, the following two chemical compounds

Decalin Bicyclopentyl

The above two compounds cannot be distinguished by the WL algorithm
GNNs that are not more powerful than WL cannot embed the two

compounds into different representations

25 / 37

How can we Build More Powerful Graph Models?

A very active field of research!

There are models that:

perform message passing between subsets of nodes (instead of nodes)

k-GNN [Morris et al., AAAI’19]

extract and process subgraphs

k-hop [Nikolentzos et al., Neural Networks 130]

node-deleted subgraphs [Cotta et al., NeurIPS’21]

use extended neighborhoods

paths emanating from nodes [Michel et al., ICML’23]

consider all possible permutations of nodes

RelationalPooling [Murphy et al., ICML’19]

CLIP [Dasoulas et al., IJCAI’20]

utilize invariant and equivariant linear layers

k-order graph networks [Maron et al., ICLR’19]

26 / 37

Relational Pooling

Idea: increase a model’s expressive power by considering all possible
permutations of nodes!

Given graph G consisting of n nodes, let A ∈ Rn×n, and X ∈ Rn×d denote
the adjacency matrix and matrix of node features of G, respectively

Then, a representation for the entire graph is produced as follows:

hG =
1

n!

∑
P∈Π

f(PAP⊤,PX)

where Π is the set of n× n permutation matrices

Example of an RP model [Murphy et al., ICML’19]:
(1) add unique IDs as node features
(2) use any message passing GNN model
(3) sum over all permutations of IDs

GNN
001

010 100
GNN

001

100 010
GNN

010

001 100
GNN

010

100 001
+ + +

GNN
100

010 001
GNN

100

001 010
+ +

RPGNN =

27 / 37

Subgraph GNNs

Idea: We can decompose a graph into a set of subgraphs and process those
subgraphs

Step 1: Extract subgraphs from a graph and represent the graph as a set of
its subgraphs

{ }, , , ,

Step 2: We can generate a representation for the graph by mapping the set
of subgraphs into a vector

However, two main challenges arise:
1 How to extract subgraphs from a given graph?

↪→ different models propose different policies

2 How to process sets of subgraphs?
↪→ each subgraph can be mapped into a vector and then, set of vectors
mapped into a single representation

28 / 37

Subgraph GNNs

Idea: We can decompose a graph into a set of subgraphs and process those
subgraphs

Step 1: Extract subgraphs from a graph and represent the graph as a set of
its subgraphs

{ }, , , ,

Step 2: We can generate a representation for the graph by mapping the set
of subgraphs into a vector

However, two main challenges arise:
1 How to extract subgraphs from a given graph?

↪→ different models propose different policies

2 How to process sets of subgraphs?
↪→ each subgraph can be mapped into a vector and then, set of vectors
mapped into a single representation

28 / 37

How to Extract Subgraphs from a Given Graph?

Different policies can be employed [Bevilacqua et al., ICLR’22]

Edge-deleted subgraphs

{ }, , , ,

Node-deleted subgraphs

{ }, , ,

Ego-networks (rooted)

{ }, , ,

29 / 37

How to Process Sets of Subgraphs?

Use some message passing GNN model (e.g., GIN) to obtain a vector
representation for each subgraph

Then, use DeepSets to obtain a final representation for entire graph

{ }, , , ,

GNN

{ }, , , , DeepSets

30 / 37

Transformer

Transformer has become a dominant architecture in many domains (e.g., natural
language processing, computer vision)

The Transformer architecture consists of a composition of Transformer layers

Each Transformer layer has two parts:

(i) a self-attention module
(ii) a position-wise feed-forward network (FFN)

Let H = [h⊤
1 , . . . ,h

⊤
n]

⊤ ∈ Rn×d denote the input of self-attention module where d
is the hidden dimension and hi ∈ R1×d is the hidden representation at position i

The input H is projected by three matrices WQ ∈ Rd×dK , WK ∈ Rd×dK and
WV ∈ Rd×dV to the corresponding representations Q,K,V:

Q = HWQ, K = HWK , V = HWV

The self-attention is then calculated as

A =
QK⊤
√
dK

Attn(H) = softmax(A)V

31 / 37

Graphormer

Suppose we trivially apply a Transformer to graph data

For each node vi, self-attention only calculates the semantic similarity
between vi and other nodes, without considering the structural information of
the graph

Idea: incorporate structural information of graphs into the model
But what type of structural information?

In a graph, different nodes may have different importance, e.g., celebrities
are considered to be more influential than the rest of the users in a social
network

Graphormer uses Centrality Encoding to capture the node importance in the
graph [Ying et al., NeurIPS’21]:

h(0)
v = xv + zdeg(v)

where xv is the vector of initial node features of v and zdeg(v) is a learnable
embedding vector specified by the degree of v

32 / 37

Graphormer

Suppose we trivially apply a Transformer to graph data

For each node vi, self-attention only calculates the semantic similarity
between vi and other nodes, without considering the structural information of
the graph

Idea: incorporate structural information of graphs into the model
But what type of structural information?

In a graph, different nodes may have different importance, e.g., celebrities
are considered to be more influential than the rest of the users in a social
network

Graphormer uses Centrality Encoding to capture the node importance in the
graph [Ying et al., NeurIPS’21]:

h(0)
v = xv + zdeg(v)

where xv is the vector of initial node features of v and zdeg(v) is a learnable
embedding vector specified by the degree of v

32 / 37

Graphormer

Suppose we trivially apply a Transformer to graph data

For each node vi, self-attention only calculates the semantic similarity
between vi and other nodes, without considering the structural information of
the graph

Idea: incorporate structural information of graphs into the model
But what type of structural information?

In a graph, some nodes are closer to a given node than other nodes

Graphormer models such structural information as follows [Ying et al., NeurIPS’21]:

Aij =
(WQ hvi)

⊤(WK hvj)√
d

+ bϕ(vi,vj)

where ϕ is a function that measures the shortest path distance between two
nodes

33 / 37

Experimental Evaluation

Experiments on two molecular property prediction datasets:

(i) ZINC-12K dataset

a graph regression dataset

consists of 12, 000 molecules

the task is to predict the constrained solubility of molecules, an important
chemical property for designing generative GNNs for molecules

(ii) ogbg-molhiv

a binary graph classification dataset from the Open Graph Benchmark (OGB)

consists of 41, 127 molecules

the task is to predict whether a molecule inhibits HIV virus replication or not

All experiments are conducted using available train/val/test splits

34 / 37

Graph Regression Results

Table: Mean absolute error (± standard deviation) of the different methods on the
ZINC12K dataset. K denotes the number of employed layers.

K ZINC-12K ↓

GCN [Kipf and Welling, ICLR’17] 16 0.278 ± 0.003

GraphSAGE [Hamilton et al., NeurIPS’17] 16 0.398 ± 0.002

MoNet [Monti et al., CVPR’17] 16 0.292 ± 0.006

GAT [Velickovic et al., ICLR’18] 16 0.384 ± 0.007

GIN [Xu et al., ICLR’19] 5 0.387 ± 0.015

RingGNN [Chen et al., NeurIPS’19] 2 0.353 ± 0.019

PPGN [Maron et al., NeurIPS’19] 3 0.256 ± 0.054

GNNML3 [Balcilar et al., ICML’21] NA 0.161 ± 0.006

Graphormer [Ying et al., NeurIPS’21] NA 0.122 ± 0.006

CIN [Bodnar et al., NeurIPS’21] NA 0.079 ± 0.006

ESAN [Bevilacqua et al., ICLR’22] NA 0.102 ± 0.003

KP-GIN [Feng et al., NeurIPS’22] NA 0.093 ± 0.007

AgentNet [Martinkus et al., ICLR’23] NA 0.258 ± 0.033

PathNN [Gaspard et al., ICML’23] 4 0.090 ± 0.004

35 / 37

Graph Classification Results

Table: ROC-AUC score (± standard deviation) of the different methods on the
ogbg-molhiv dataset.

ogbg-molhiv ↑

GCN [Kipf and Welling, ICLR’17] 76.06 ± 0.97

GIN [Xu et al., ICLR’19] 75.58 ± 1.40

GSN [Bouritsas et al., TPAMI 45(1)] 77.99 ± 1.00

HIMP [Fey et al., arXiv:2006.12179] 78.80 ± 0.82

PNA [Corso et al., NeurIPS’20] 79.05 ± 1.32

DGN [Beaini et al., ICML’21] 79.70 ± 0.97

Graphormer [Ying et al., NeurIPS’21] 80.51 ± 0.53

CIN [Bodnar et al., NeurIPS’21] 80.94 ± 0.57

ESAN [Bevilacqua et al., ICLR’22] 78.00 ± 1.42

E-SPN [Abboud et al., LOG’23] 77.10 ± 1.20

GRWNN [Nikolentzos and Vazirgiannis, AISTATS’23] 78.38 ± 0.99

WLHN [Nikolentzos et al., AISTATS’23] 78.41 ± 0.31

AgentNet [Martinkus et al., ICLR’23] 78.33 ± 0.69

PathNN [Gaspard et al., ICML’23] 79.17 ± 1.09

36 / 37

Thank you!

: @giannis nikole
Slides: https://users.uop.gr/~nikolentzos/files/slides_hias.pdf

Contact: lastname@uop.gr

37 / 37

https://twitter.com/giannis_nikole
https://users.uop.gr/~nikolentzos/files/slides_hias.pdf

