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About the Tutorial

Structure:

▶ Part I: Symbolic AI for complex event recognition.

▶ Part II: Integration of symbolic with sub-symbolic AI for
complex event recognition.

Slides, code, data & opportunities for collaboration:
https://cer.iit.demokritos.gr
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Complex Event Recognition (Event Pattern Matching)∗,†

INPUT ▶ RECOGNITION ▶ OUTPUT ▶

Complex
Event

Recognition
System

Complex Event
Definitions

Simple Event Stream

. . .. . .

. . .. . .

Complex Event Stream

. . . . . .

. . . . . .

https://rdcu.be/cNkQE

∗
Giatrakos et al, Complex Event Recognition in the Big Data Era: A Survey. VLDB Journal, 2020.

†
Alevizos et al, Probabilistic Complex Event Recognition: A Survey. ACM Computing Surveys, 2017.
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Maritime Situational Awareness∗

http://www.marinetraffic.com

https://cer.iit.demokritos.gr (fishing vessel)

∗
Artikis and Zissis, Guide to Maritime Informatics, Springer, 2021.
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Maritime Situational Awareness∗

https://cer.iit.demokritos.gr (tugging)

https://cer.iit.demokritos.gr (pilot boarding)

https://www.skylight.global (rendez-vous)

https://www.skylight.global (enter area)

∗
Artikis and Zissis, Guide to Maritime Informatics, Springer, 2021.
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https://www.youtube.com/watch?v=QwVsPZy-0lY&feature=emb_logo
https://cer.iit.demokritos.gr/blog/applications/maritime_surveillance/
https://www.youtube.com/watch?v=xsATVZWcnaU&feature=emb_logo
https://cer.iit.demokritos.gr/blog/applications/maritime_surveillance/
https://www.skylight.global/resources
https://www.skylight.global/resources


Data Challenges

▶ Velocity, Volume: Millions of position signals/day at European
scale.

▶ Variety: Position signals need to be combined with other data
streams
▶ Weather forecasts, sea currents, etc.

▶ ... and static information
▶ NATURA areas, shallow waters areas, coastlines, etc.

▶ Lack of Veracity: GPS manipulation, vessels reporting false
identity, communication gaps.

▶ Distribution: Vessels operating across the globe.
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Many Other Applications

▶ Cardiac arrhythmia recognition.

▶ Financial fraud detection.

▶ Human activity recognition.

▶ Intrusion detection in computer networks.

▶ Traffic congestion recognition and forecasting in smart cities.

6 / 23



Requirements

▶ Expressive representation
▶ to capture complex relationships between the events that

stream into the system.

▶ Efficient reasoning
▶ to support real-time decision-making in large-scale,

(geographically) distributed applications.

▶ Automated knowledge construction
▶ to avoid the time-consuming, error-prone manual CE definition

development.

▶ Reasoning under uncertainty
▶ to deal with various types of noise.

▶ Complex event forecasting
▶ to support proactive decision-making.
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Complex Event Recognition vs
Database Management Systems∗

Complex event recognition systems:

▶ Process data without storing them.

▶ Data are continuously updated.
▶ Data stream into the system in high velocity.
▶ Data streams are large (usually unbounded).

▶ No assumption can be made on data arrival order.
▶ Users install standing/continuous queries:

▶ Queries deployed once and executed continuously until
removed.

▶ Online reasoning.

▶ Latency requirements are very strict.

∗
Gugola and Margara, Processing Flows of Information: From Data Stream to Complex Event Processing.

ACM Computing Surveys, 2012.
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Complex Event Recognition vs Deep Learning

We have Deep Learning and it seems to work. Can we go home?

Complex event recognition:

▶ Formal semantics for trustworthy models.

▶ Explanation — why did we detect a complex event?
▶ Machine Learning is necessary. But:

▶ Complex events are rare.
▶ Supervision is scarce.

▶ More often than not, background knowledge is available —
let’s use it!
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Event Calculus∗

▶ A logic programming language for representing and reasoning
about events and their effects.

▶ Key components:
▶ event (typically instantaneous).
▶ fluent: a property that may have different values at different

points in time.

▶ Built-in representation of inertia:
▶ F =V holds at a particular time-point if F =V has been

initiated by an event at some earlier time-point, and not
terminated by another event in the meantime.

∗
Kowalski and Sergot, A Logic-based Calculus of Events. New Generation Computing, 1986.
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Run-Time Event Calculus (RTEC)∗

initiatedAt(F =V , T )← terminatedAt(F =V , T )←
happensAt(EIn1 , T ), happensAt(ET1 , T ),
[conditions] [conditions]

. . . . . .
initiatedAt(F =V , T )← terminatedAt(F =V , T )←

happensAt(EIni , T ), happensAt(ETj
, T ),

[conditions] [conditions]

where

conditions: 0−KhappensAt(Ek , T ),
0−MholdsAt(Fm =Vm, T ),
0−Natemporal-constraintn

∗
Artikis et al, An Event Calculus for Event Recognition. IEEE TKDE, 2015.

https://github.com/aartikis/RTEC
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Fleet Management∗

https://cer.iit.demokritos.gr (refuelling opportunities)

∗
Tsilionis et al, Online Event Recognition from Moving Vehicles. Theory and Practice of Logic Programming,

2019.
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https://cer.iit.demokritos.gr/blog/applications/fleet_management/


RTEC: Interval-based Reasoning

holdsFor(anchoredOrMoored(Vessel)= true, I )←
holdsFor(stopped(Vessel)= farFromPorts, Isf ),
holdsFor(withinArea(Vessel , anchorage)= true, Iwa),
intersect all([Isf , Iwa], Isa),
holdsFor(stopped(Vessel)= nearPorts, Isn),
union all([Isa, Isn], I ).

Iwa

Isf

Time
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I

Isn

Isa

Iwa

Isf

Time
https://cer.iit.demokritos.gr (anchored or moored)
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RTEC: Interval-based Reasoning

I1
I2
I3

Time

Relation Illustration

before(i s , i t)
i s

i t

meets(i s , i t)
i s

i t

starts(i s , i t)
i s

i t

finishes(i s , i t)
i s

i t

during(i s , i t)
i s

i t

overlaps(i s , i t)
i s

i t

equal(i s , i t)
i s

i t
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Iu
Ii
Ic
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RTEC: Interval-based Reasoning & Allen Relations∗

I1
I2
I3

Iu
Ii
Ic

union all([I1 , I2 , I3 ], Iu )

intersect all([I1 , I2 , I3 ], Ii )

relative complement all(I1 , [I2 , I3 ], Ic)

Time

Relation Illustration

before(i s , i t)
i s

i t

meets(i s , i t)
i s

i t

starts(i s , i t)
i s

i t

finishes(i s , i t)
i s

i t

during(i s , i t)
i s

i t

overlaps(i s , i t)
i s

i t

equal(i s , i t)
i s

i t

∗
Mantenoglou et al, Complex Event Recognition with Allen Relations. Knowledge Representation and

Reasoning (KR), 2023.
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Semantics

drifting

highSpeedNC

withinArea

trawlSpeed

anchoredOrMoored

movingSpeed

tuggingSpeed

changingSpeed

trawlingMovement

loitering

gap

sarSpeed

pilotBoarding

stopped

sarMovement

underWay

rendezVous

sar

trawling

lowSpeed

tugging

permission
=false

quote=true

suspended
=true

contract 
=true

power 
=true

obligation 
=true

status 
=proposed

status 
=voting

status 
=voted

status=null

auxPer
=true

outcome
=carried

power
=true

voted
=aye/nay

voted
=null

permission
=true

obligation
=true

sanctioned
=true

Proposition

An event description in RTEC is a locally stratified logic program.
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Proposition

An event description in RTEC is a locally stratified logic program∗.

∗
Mantenoglou et al, Stream Reasoning with Cycles. Knowledge Representation and Reasoning (KR), 2022.
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Stratification & Reasoning

drifting
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withinArea
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Incremental Reasoning: Deletion Phase∗
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RTEC: Correctness and Complexity

Correctness

RTEC computes all maximal intervals of a fluent, and no other
interval, provided that interval delays/retractions, if any, are
tolerated by the window size.

Complexity

The time to compute the maximal intervals of a fluent is linear to
the window size.
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Performance: Indicative Results
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Summary

Run-Time Event Calculus (RTEC):

▶ Interval-based reasoning → avoid unintended semantics.

▶ Formal, declarative semantics → robust/trustworthy CER.

▶ White-box model → explainability.

▶ Expressive language → n-ary constraints.

▶ Incremental reasoning → handle out-of-order streams.

▶ Caching → real-time performance.

▶ Various implementation routes.

▶ Direct routes to machine learning → automated complex
event definition construction.

▶ Direct routes to probabilistic reasoning → handle the lack of
veracity of data streams.
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Complex Event Recognition under Uncertainty∗

and route to Neuro-Symbolic AI†

INPUT ▶ RECOGNITION ▶ OUTPUT ▶

Complex
Event

Recognition
System

Complex Event
Definitions

Simple Event Stream

. . .. . .

. . .. . .

Complex Event Stream

. . . . . .

. . . . . .

∗
Mantenoglou et al, Online Event Recognition over Noisy Data Streams. International Journal of Approximate

Reasoning, 2023. https://github.com/Periklismant/oPIEC
†
Marra et al, From statistical relational to neurosymbolic artificial intelligence: A survey. Artificial

Intelligence, 2024.
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