Neuro-Symbolic Complex Event Recognition: Part I

Alexander Artikis1,²

¹NCSR Demokritos, Athens, Greece ²University of Piraeus, Greece

<https://cer.iit.demokritos.gr>

Structure:

- ▶ Part I: Symbolic AI for complex event recognition.
- ▶ Part II: Integration of symbolic with sub-symbolic AI for complex event recognition.

Slides, code, data & opportunities for collaboration: <https://cer.iit.demokritos.gr>

Complex Event Recognition (Event Pattern Matching)[∗],†

[∗] Giatrakos et al, Complex Event Recognition in the Big Data Era: A Survey. VLDB Journal, 2020.

[†] Alevizos et al, Probabilistic Complex Event Recognition: A Survey. ACM Computing Surveys, 2017.

Complex Event Recognition (Event Pattern Matching)[∗],†

<https://rdcu.be/cNkQE>

[∗] Giatrakos et al, Complex Event Recognition in the Big Data Era: A Survey. VLDB Journal, 2020.

[†] Alevizos et al, Probabilistic Complex Event Recognition: A Survey. ACM Computing Surveys, 2017.

Maritime Situational Awareness[∗]

<http://www.marinetraffic.com>

[∗] Artikis and Zissis, Guide to Maritime Informatics, Springer, 2021.

Maritime Situational Awareness[∗]

Frawling vessel (Global view) Under way Trawling AIS message: Other vessels ishing area

[https://cer.iit.demokritos.gr \(fishing vessel\)](https://cer.iit.demokritos.gr/blog/applications/maritime_surveillance/)

<http://www.marinetraffic.com>

[∗] Artikis and Zissis, Guide to Maritime Informatics, Springer, 2021.

Maritime Situational Awareness[∗]

[https://cer.iit.demokritos.gr \(tugging\)](https://cer.iit.demokritos.gr/blog/applications/maritime_surveillance/)

[https://www.skylight.global \(rendez-vous\)](https://www.skylight.global/resources)

[https://www.skylight.global \(enter area\)](https://www.skylight.global/resources)

[∗] Artikis and Zissis, Guide to Maritime Informatics, Springer, 2021.

▶ Velocity, Volume: Millions of position signals/day at European scale.

- ▶ Velocity, Volume: Millions of position signals/day at European scale.
- ▶ Variety: Position signals need to be combined with other data streams
	- ▶ Weather forecasts, sea currents, etc.
- ▶ ... and static information
	- ▶ NATURA areas, shallow waters areas, coastlines, etc.

- ▶ Velocity, Volume: Millions of position signals/day at European scale.
- ▶ Variety: Position signals need to be combined with other data streams
	- ▶ Weather forecasts, sea currents, etc.
- ▶ ... and static information
	- ▶ NATURA areas, shallow waters areas, coastlines, etc.
- ▶ Lack of Veracity: GPS manipulation, vessels reporting false identity, communication gaps.

- ▶ Velocity, Volume: Millions of position signals/day at European scale.
- ▶ Variety: Position signals need to be combined with other data streams
	- ▶ Weather forecasts, sea currents, etc.
- ▶ ... and static information
	- \triangleright NATURA areas, shallow waters areas, coastlines, etc.
- ▶ Lack of Veracity: GPS manipulation, vessels reporting false identity, communication gaps.
- \triangleright Distribution: Vessels operating across the globe.

Many Other Applications

- ▶ Cardiac arrhythmia recognition.
- ▶ Financial fraud detection
- \blacktriangleright Human activity recognition.
- ▶ Intrusion detection in computer networks.
- ▶ Traffic congestion recognition and forecasting in smart cities.

 \blacktriangleright Expressive representation

▶ to capture complex relationships between the events that stream into the system.

- \triangleright to capture complex relationships between the events that stream into the system.
- \blacktriangleright Efficient reasoning
	- \triangleright to support real-time decision-making in large-scale, (geographically) distributed applications.

- \triangleright to capture complex relationships between the events that stream into the system.
- \blacktriangleright Efficient reasoning
	- \triangleright to support real-time decision-making in large-scale, (geographically) distributed applications.
- ▶ Automated knowledge construction
	- ▶ to avoid the time-consuming, error-prone manual CE definition development.

- ▶ to capture complex relationships between the events that stream into the system.
- \blacktriangleright Efficient reasoning
	- \triangleright to support real-time decision-making in large-scale, (geographically) distributed applications.
- ▶ Automated knowledge construction
	- ▶ to avoid the time-consuming, error-prone manual CE definition development.
- ▶ Reasoning under uncertainty
	- \blacktriangleright to deal with various types of noise.

- ▶ to capture complex relationships between the events that stream into the system.
- \blacktriangleright Efficient reasoning
	- \triangleright to support real-time decision-making in large-scale, (geographically) distributed applications.
- ▶ Automated knowledge construction
	- ▶ to avoid the time-consuming, error-prone manual CE definition development.
- ▶ Reasoning under uncertainty
	- \triangleright to deal with various types of noise.
- ▶ Complex event forecasting
	- \blacktriangleright to support proactive decision-making.

Complex event recognition systems:

▶ Process data without storing them.

[∗] Gugola and Margara, Processing Flows of Information: From Data Stream to Complex Event Processing. ACM Computing Surveys, 2012.

- ▶ Process data without storing them.
- ▶ Data are continuously updated.
	- \triangleright Data stream into the system in high velocity.
	- \triangleright Data streams are large (usually unbounded).

[∗] Gugola and Margara, Processing Flows of Information: From Data Stream to Complex Event Processing. ACM Computing Surveys, 2012.

- ▶ Process data without storing them.
- ▶ Data are continuously updated.
	- \triangleright Data stream into the system in high velocity.
	- ▶ Data streams are large (usually unbounded).
- \triangleright No assumption can be made on data arrival order.

[∗] Gugola and Margara, Processing Flows of Information: From Data Stream to Complex Event Processing. ACM Computing Surveys, 2012.

- ▶ Process data without storing them.
- ▶ Data are continuously updated.
	- \triangleright Data stream into the system in high velocity.
	- \triangleright Data streams are large (usually unbounded).
- \triangleright No assumption can be made on data arrival order.
- \triangleright Users install standing/continuous queries:
	- ▶ Queries deployed once and executed continuously until removed.
	- Online reasoning.

[∗] Gugola and Margara, Processing Flows of Information: From Data Stream to Complex Event Processing. ACM Computing Surveys, 2012.

- ▶ Process data without storing them.
- ▶ Data are continuously updated.
	- \triangleright Data stream into the system in high velocity.
	- \triangleright Data streams are large (usually unbounded).
- \triangleright No assumption can be made on data arrival order.
- \triangleright Users install standing/continuous queries:
	- ▶ Queries deployed once and executed continuously until removed.
	- ▶ Online reasoning.
- ▶ Latency requirements are very strict.

[∗] Gugola and Margara, Processing Flows of Information: From Data Stream to Complex Event Processing. ACM Computing Surveys, 2012.

We have Deep Learning and it seems to work. Can we go home?

We have Deep Learning and it seems to work. Can we go home?

Complex event recognition:

▶ Formal semantics^{*} for trustworthy models.

[∗] Grez et al, A Formal Framework for Complex Event Recognition. ACM Transactions on Database Systems, 2021.

We have Deep Learning and it seems to work. Can we go home?

Complex event recognition:

- ▶ Formal semantics^{*} for trustworthy models.
- \triangleright Explanation why did we detect a complex event?

[∗] Grez et al, A Formal Framework for Complex Event Recognition. ACM Transactions on Database Systems, 2021.

We have Deep Learning and it seems to work. Can we go home?

Complex event recognition:

- ▶ Formal semantics^{*} for trustworthy models.
- \blacktriangleright Explanation why did we detect a complex event?
- ▶ Machine Learning is necessary. But:
	- ▶ Complex events are rare.
	- \blacktriangleright Supervision is scarce.

[∗] Grez et al, A Formal Framework for Complex Event Recognition. ACM Transactions on Database Systems, 2021.

We have Deep Learning and it seems to work. Can we go home?

Complex event recognition:

- ▶ Formal semantics^{*} for trustworthy models.
- \blacktriangleright Explanation why did we detect a complex event?
- ▶ Machine Learning is necessary. But:
	- ▶ Complex events are rare.
	- \blacktriangleright Supervision is scarce.
- \triangleright More often than not, background knowledge is available let's use it!

[∗] Grez et al, A Formal Framework for Complex Event Recognition. ACM Transactions on Database Systems, 2021.

Event Calculus[∗]

- ▶ A logic programming language for representing and reasoning about events and their effects.
- ▶ Key components:
	- \blacktriangleright event (typically instantaneous).
	- ▶ fluent: a property that may have different values at different points in time.

[∗] Kowalski and Sergot, A Logic-based Calculus of Events. New Generation Computing, 1986.

Event Calculus[∗]

- ▶ A logic programming language for representing and reasoning about events and their effects.
- ▶ Key components:
	- \blacktriangleright event (typically instantaneous).
	- \blacktriangleright fluent: a property that may have different values at different points in time.
- ▶ Built-in representation of inertia:
	- \blacktriangleright $F = V$ holds at a particular time-point if $F = V$ has been initiated by an event at some earlier time-point, and not terminated by another event in the meantime.

[∗] Kowalski and Sergot, A Logic-based Calculus of Events. New Generation Computing, 1986.

happensAt (E_{In_1}, T) , [conditions] [conditions]

. happensAt (E_{Ini}, T) , [conditions] [conditions]

initiatedAt($F = V$, T) \leftarrow terminatedAt($F = V$, T) \leftarrow , T), happensAt $(E_{\mathcal{T}_1}, \mathcal{T})$,

initiatedAt($F = V$, T) \leftarrow terminatedAt($F = V$, T) \leftarrow , T), happensAt $(E_{\mathcal{T}_j}, \ \mathcal{T}),$

where

conditions: $0-K$ happensAt(E_k , T), $0-M$ holdsAt($F_m = V_m$, T), $0-N$ atemporal-constraint_n

[∗] Artikis et al, An Event Calculus for Event Recognition. IEEE TKDE, 2015. <https://github.com/aartikis/RTEC>

happensAt (E_{In_1}, T) , [conditions] [conditions]

happensAt (E_{Ini}, T) , [conditions] [conditions]

initiatedAt($F = V$, T) \leftarrow terminatedAt($F = V$, T) \leftarrow , T), happensAt $(E_{\mathcal{T}_1}, \mathcal{T})$,

. initiatedAt($F = V$, T) \leftarrow terminatedAt($F = V$, T) \leftarrow , T), happensAt $(E_{\mathcal{T}_j}, \mathcal{T})$,

happensAt (E_{ln_1}, T) , [conditions] [conditions]

happensAt (E_{Ini}, T) , [conditions] [conditions]

initiatedAt($F = V$, T) \leftarrow terminatedAt($F = V$, T) \leftarrow , T), happensAt $(E_{\mathcal{T}_1}, \mathcal{T})$,

. initiatedAt($F = V$, T) \leftarrow terminatedAt($F = V$, T) \leftarrow , T), happensAt $(E_{\mathcal{T}_j}, \mathcal{T})$,

happensAt (E_{ln_1}, T) , [conditions] [conditions]

happensAt (E_{Ini}, T) , [conditions] [conditions]

initiatedAt($F = V$, T) \leftarrow terminatedAt($F = V$, T) \leftarrow , T), happensAt (E_{T_1}, T) ,

. initiatedAt($F = V$, T) \leftarrow terminatedAt($F = V$, T) \leftarrow , T), happensAt $(E_{\mathcal{T}_j}, \mathcal{T})$,

.

happensAt (E_{In_1}, T) , [conditions]

happensAt (E_{In_i}, \mathcal{T}) , [conditions]

initiatedAt($F = V, T$) \leftarrow terminatedAt($F = V, T$) \leftarrow , T), happensAt (E_{T_1}, T) , [conditions] [conditions]

initiatedAt($F = V$, T) \leftarrow terminatedAt($F = V$, T) \leftarrow , T), happensAt $(E_{\mathcal{T}_j}, \mathcal{T})$, [conditions]

holdsFor($F = V, I$)

Fleet Management[∗]

[https://cer.iit.demokritos.gr \(refuelling opportunities\)](https://cer.iit.demokritos.gr/blog/applications/fleet_management/)

[∗] Tsilionis et al, Online Event Recognition from Moving Vehicles. Theory and Practice of Logic Programming, 2019.

RTEC: Interval-based Reasoning

holdsFor(anchoredOrMoored(Vessel) = true, I) \leftarrow **holdsFor**(stopped(Vessel) = farFromPorts, I_{sf}), **holdsFor**(withinArea(Vessel, anchorage) = true, I_{wa}), intersect_all($[I_{sf}, I_{wa}]$, I_{sa}), holdsFor(stopped(Vessel) = nearPorts, I_{sn}), union all $([I_{sa}, I_{sn}], I)$.

union_all $([I_1, I_2, I_3], I_u)$

union_all $([I_1, I_2, I_3], I_u)$ intersect_all $([I_1, I_2, I_3], I_i)$

RTEC: Interval-based Reasoning & Allen Relations[∗]

[∗]Mantenoglou et al, Complex Event Recognition with Allen Relations. Knowledge Representation and Reasoning (KR), 2023.

Semantics

Semantics

Semantics

Proposition

An event description in RTEC is a locally stratified logic program[∗] .

[∗]Mantenoglou et al, Stream Reasoning with Cycles. Knowledge Representation and Reasoning (KR), 2022.

Windowing

Windowing

Windowing

[∗] Tsilionis et al, Incremental Event Calculus for Run-Time Reasoning. Journal of AI Research (JAIR), 2022.

[∗] Tsilionis et al, Incremental Event Calculus for Run-Time Reasoning. Journal of AI Research (JAIR), 2022.

[∗] Tsilionis et al, Incremental Event Calculus for Run-Time Reasoning. Journal of AI Research (JAIR), 2022.

[∗] Tsilionis et al, Incremental Event Calculus for Run-Time Reasoning. Journal of AI Research (JAIR), 2022.

[∗] Tsilionis et al, Incremental Event Calculus for Run-Time Reasoning. Journal of AI Research (JAIR), 2022.

RTEC: Correctness and Complexity

Correctness

RTEC computes all maximal intervals of a fluent, and no other interval, provided that interval delays/retractions, if any, are tolerated by the window size.

RTEC: Correctness and Complexity

Correctness

RTEC computes all maximal intervals of a fluent, and no other interval, provided that interval delays/retractions, if any, are tolerated by the window size.

Complexity

The time to compute the maximal intervals of a fluent is linear to the window size.

Performance: Indicative Results

Run-Time Event Calculus (RTEC):

▶ Interval-based reasoning \rightarrow avoid unintended semantics.

- $▶$ Interval-based reasoning $→$ avoid unintended semantics.
- ▶ Formal, declarative semantics \rightarrow robust/trustworthy CER.

- ▶ Interval-based reasoning \rightarrow avoid unintended semantics.
- ▶ Formal, declarative semantics \rightarrow robust/trustworthy CER.
- \triangleright White-box model \rightarrow explainability.

- ▶ Interval-based reasoning \rightarrow avoid unintended semantics.
- ▶ Formal, declarative semantics \rightarrow robust/trustworthy CER.
- \triangleright White-box model \rightarrow explainability.
- ▶ Expressive language \rightarrow *n*-ary constraints.

- ▶ Interval-based reasoning \rightarrow avoid unintended semantics.
- ▶ Formal, declarative semantics \rightarrow robust/trustworthy CER.
- \triangleright White-box model \rightarrow explainability.
- ▶ Expressive language \rightarrow *n*-ary constraints.
- ▶ Incremental reasoning \rightarrow handle out-of-order streams.

- ▶ Interval-based reasoning \rightarrow avoid unintended semantics.
- ▶ Formal, declarative semantics \rightarrow robust/trustworthy CER.
- \triangleright White-box model \rightarrow explainability.
- ▶ Expressive language \rightarrow *n*-ary constraints.
- ▶ Incremental reasoning \rightarrow handle out-of-order streams.
- ▶ Caching \rightarrow real-time performance.

- ▶ Interval-based reasoning \rightarrow avoid unintended semantics.
- ▶ Formal, declarative semantics \rightarrow robust/trustworthy CER.
- \triangleright White-box model \rightarrow explainability.
- ▶ Expressive language \rightarrow *n*-ary constraints.
- ▶ Incremental reasoning \rightarrow handle out-of-order streams.
- ▶ Caching \rightarrow real-time performance.
- ▶ Various implementation routes*.

[∗] Tsilionis et al, A Tensor-based Formalisation of the Event Calculus. IJCAI, 2024.
Summary

Run-Time Event Calculus (RTEC):

- $▶$ Interval-based reasoning $→$ avoid unintended semantics.
- ▶ Formal, declarative semantics \rightarrow robust/trustworthy CER.
- \triangleright White-box model \rightarrow explainability.
- ▶ Expressive language \rightarrow *n*-ary constraints.
- ▶ Incremental reasoning \rightarrow handle out-of-order streams.
- ▶ Caching \rightarrow real-time performance.
- ▶ Various implementation routes*.
- ▶ Direct routes to machine learning \rightarrow automated complex event definition construction† .

[∗] Tsilionis et al, A Tensor-based Formalisation of the Event Calculus. IJCAI, 2024.

[†]Michelioudakis et al, Online Semi-Supervised Learning of Composite Event Rules by Combining Structure and Mass-based Predicate Similarity. Machine Learning, 2024.

Summary

Run-Time Event Calculus (RTEC):

- $▶$ Interval-based reasoning $→$ avoid unintended semantics.
- ▶ Formal, declarative semantics \rightarrow robust/trustworthy CER.
- \triangleright White-box model \rightarrow explainability.
- ▶ Expressive language \rightarrow *n*-ary constraints.
- ▶ Incremental reasoning \rightarrow handle out-of-order streams.
- ▶ Caching \rightarrow real-time performance.
- ▶ Various implementation routes*.
- ▶ Direct routes to machine learning \rightarrow automated complex event definition construction† .
- ▶ Direct routes to probabilistic reasoning \rightarrow handle the lack of veracity of data streams.

[∗] Tsilionis et al, A Tensor-based Formalisation of the Event Calculus. IJCAI, 2024.

[†]Michelioudakis et al, Online Semi-Supervised Learning of Composite Event Rules by Combining Structure and Mass-based Predicate Similarity. Machine Learning, 2024.

[∗]Mantenoglou et al, Online Event Recognition over Noisy Data Streams. International Journal of Approximate Reasoning, 2023. <https://github.com/Periklismant/oPIEC>

[†]Marra et al, From statistical relational to neurosymbolic artificial intelligence: A survey. Artificial Intelligence, 2024.

[∗]Mantenoglou et al, Online Event Recognition over Noisy Data Streams. International Journal of Approximate Reasoning, 2023. <https://github.com/Periklismant/oPIEC>

[†]Marra et al, From statistical relational to neurosymbolic artificial intelligence: A survey. Artificial Intelligence, 2024.

[∗]Mantenoglou et al, Online Event Recognition over Noisy Data Streams. International Journal of Approximate Reasoning, 2023. <https://github.com/Periklismant/oPIEC>

[†]Marra et al, From statistical relational to neurosymbolic artificial intelligence: A survey. Artificial Intelligence, 2024.

[∗]Mantenoglou et al, Online Event Recognition over Noisy Data Streams. International Journal of Approximate Reasoning, 2023. <https://github.com/Periklismant/oPIEC>

[†]Marra et al, From statistical relational to neurosymbolic artificial intelligence: A survey. Artificial Intelligence, 2024.